1 4.5 高斯求积公式. 2 4.5.1 一般理论 求积公式 含有 个待定参数 当 为等距节点时得到的插值型求积公式其代数精度至 少为 次. 如果适当选取 有可能使求积公式 具有 次代数精度,这类求积公式称为高斯 (Gauss) 求积公式.

Slides:



Advertisements
Similar presentations
数值分析 第五节 数值微分 在实际问题中,往往会遇到某函数 f(x) 是用表格 表示的, 用通常的导数定义无法求导, 因此要寻求其他 方法近似求导。常用的数值微分方法有 : 一. 运用差商求数值微分 二.运用插值函数求数值微分 三. 运用样条插值函数求数值微分 四. 运用数值积分求数值微分.
Advertisements

第六章 数值微分 6.1 插值型数值微分公式 6.2 插值型数值积分. 6.1 插值型数值微分公式 当 x 为插值节点 时,上式简化为 故一般限于对节点上的导数值采用插值多项式的相应导数 值进行近似计算,以便估计误差。 一般地 这类公式称为插值型数值微分公式。
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
第 5 章 数值积分 §1 插值型求积公式 §2 复化求积公式 §3 龙贝格 (Romberg) 求积方法 §4§4 数值微分 数值微分.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
§1. 导数的概念 1. 什么是导数(值)?如何表示? 2. 导数的几何意义? 3. 函数可导与连续的关系?(了解) §2. 导数的基本运算法则 反函数的求导法则? §3. 导数的基本公式.
理学院 张立杰 《数值分析》第四讲 数值积分与微分. §4.1 引言 第四章:数值积分与数值微分 1 、积分的概念 设 任取 做 如果 存在, 则称 可积,极限值称为函数 在区间 [a,b] 上的 定积分,记为 : Riemann 积分.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
第3节 二次型与二次型的化简 一、二次型的定义 二、二次型的化简(矩阵的合同) 下页.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
第二章 数值微分和数值积分.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
9.1 数值积分基本方法 9.2 梯形积分 9.3 Simpson积分 9.4 Newton-Cotes积分 9.5 Romberg积分
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 数值积分与数值微分 — 基本概念 — Newton-Cotes 公式.
第4章 数值积分与数值微分.
计算方法 第2章 数值微分与数值积分 2.1 数值微分.
Chapter 7 数值积分与数值微分.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
计算机数学基础(下) 第5编 数值分析 第14章 常微分方程的数值解法.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第四章 数值积分与数值微分 — 复合求积公式 — Romberg 算法.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
计算机数学基础(下) 第5编 数值分析 第12章 数值积分与微分(续).
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
第二章 函数 插值 — 分段低次插值.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第二章 函 数 插 值 — 三次样条插值.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2019/5/20 第三节 高阶导数 1.
§2 方阵的特征值与特征向量.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
Presentation transcript:

1 4.5 高斯求积公式

一般理论 求积公式 含有 个待定参数 当 为等距节点时得到的插值型求积公式其代数精度至 少为 次. 如果适当选取 有可能使求积公式 具有 次代数精度,这类求积公式称为高斯 (Gauss) 求积公式.

3 为具有一般性,研究带权积分 这里 为权函数, 求积公式为 ( 5.1 ) 为不依赖于 的求积系数. 使( 5.1 )具有 次代数精度. 为求积节点, 可适当选取 定义 4 如果求积公式 (5.1) 具有 次代数精度, 则称其节点 为高斯点,相应公式 (5.1) 称为高斯求 积公式. 高斯求积公式

4 根据定义要使 (5.1) 具有 次代数精度,只要对 ( 5.2 ) 当给定权函数 ,求出右端积分,则可由 (5.2) 解得 令 (5.1) 精确成立, 即 高斯求积公式

5 例5例5 ( 5.3 ) 解 令公式 (5.3) 对于 准确成立, 试构造下列积分的高斯求积公式: 得 ( 5.4 )

6 由于 利用 (5.4) 的第 1 式,可将第 2 式化为 同样地,利用第 2 式化第 3 式,利用第 3 式化第 4 式,分别得 从上面三个式子消去 有

7 进一步整理得 由此解出 从而

8 这样,形如 (5.3) 的高斯公式是 由于非线性方程组 (5.2) 较复杂,通常 就很难求解. 故一般不通过解方程 (5.2) 求 , 从分析高斯点的特性来构造高斯求积公式.

9 定理 5 是高斯点的充分必要条件是以这些节点为零点的多项式 与任何次数不超过 的多项式 带权 正交, ( 5.5 ) 证明 即 插值型求积公式 (5.1) 的节点 必要性. 设 则 定理

10 是高斯点, 因此,如果 精确成立, 因 即有 故 (5.5) 成立. 则求积公式 (5.1) 对于 充分性. 用 除 , 记商为 , 余式为 , 即, 其中. 对于 由 (5.5) 可得 ( 5.6 ) 定理证明

11 由于求积公式 (5.1) 是插值型的,它对于 是精确的, 即 再注意到 知 从而由 (5.6) 有 定理证明

12 可见求积公式 (5.1) 对一切次数不超过 的多项式均精 确成立. 因此, 为高斯点. 定理表明在 上带权 的 次正交多项式的 零点就是求积公式 (5.1) 的高斯点. 有了求积节点 ,再利用 对 成立, 的线性方程. 解此方程则得 则得到一组关于求积系数 定理证明

13 也可直接由 的插值多项式求出求积系数

高斯 - 勒让德求积公式 在高斯求积公式 (5.1) 中, 由于勒让德多项式是区间 上的正交多项式,因此, 勒让德多项式 的零点就是求积公式 (5.9) 的高斯点. 形如 (5.9) 的高斯公式称为高斯 - 勒让德求积公式. 区间为 则得公式 若取权函数 ( 5.9 )

15 令它对 准确成立,即可定出 这样构造出的一点高斯 - 勒让德求积公式为 是中矩形公式. 若取 的零点 做节点构造求积公式 再取 的两个零点 构造求积公式 高斯 - 勒让德求积公式

16 令它对 都准确成立,有 由此解出 三点高斯 - 勒让德公式的形式是 表 4-7 列出高斯 - 勒让德求积公式 (5.9) 的节点和系数. 从而得到两点高斯 - 勒让德求积公式 高斯 - 勒让德求积公式

17 高斯 - 勒让德求积公式的节点和系数

18 例 6 用 4 点 ( ) 的高斯 - 勒让德求积公式计算 解 先将区间 化为 , 根据表 4-7 中 的节点及系数值可求得 由 (5.11) 有 例题

高斯 - 切比雪夫求积公式 若 且取权函数 则所建立的高斯公式为 ( 5.12 ) 称为高斯 - 切比雪夫求积公式.

20 由于区间 上关于权函数 的正交多项式是 切比雪夫多项式, 因此求积公式 (5.12) 的高斯点是 次 切比雪夫多项式的零点,即为 (5.12) 的系数 使用时将 个节点公式改为 个节点, ( 5.13 ) 于是高斯 - 切比雪夫求积公式写成

数 值 微 分 数值微分就是用函数值的线性组合近似函数在某点的 导数值.

中点方法与误差分析 按导数定义可以简单地用差商近似导数,这样立即得 到几种数值微分公式 其中 为一增量,称为步长. ( 6.1 )

23 后一种数值微分方法称为中点方法,它其实是前两种 方法的算术平均. 但它的误差阶却由 提高到 较为常用的是中点公式. 为利用中点公式 计算导数的近似值,首先必须选取合适的步长,为此需要 进行误差分析. 分别将 在 处做泰勒展开有

24 代入中点公式得 从截断误差的角度看,步长越小,计算结果越准确. 其中 且 ( 6.2 )

25 再考察舍入误差. 按中点公式,当 很小时,因 与 很接 近,直接相减会造成有效数字的严重损失. 因此,从舍入误差的角度来看,步长是不宜太小的. 例如,用中点公式求 在 处的一阶导数 取 4 位数字计算. 结果见表 4-8( 导数的准确值 ).

26 从表 4-8 中看到 的逼近效果最好,如果进一步 缩小步长,则逼近效果反而越差.

27 它表明 越小,舍入误差 越大,故它是病态的. 用中点公式 (6.1) 计算 的误差上界为 要使误差 最小,步长 不宜太大,也不宜太小. 其最优步长应为

插值型的求导公式 对于列表函数 运用插值原理,可以建立插值多项式 作为它的近似. 由于多项式的求导比较容易,我们取 的值作为 的近似值,这样建立的数值公式 ( 6.3 ) 统称插值型的求导公式.

29 即使 与 的值相差不多, 与导数的真值 仍然可能差别很大. 导数的近似值 因而在使用求导公式 (6.3) 时应特别注意误差的分析. 依据插值余项定理,求导公式 (6.3) 的余项为 式中

30 但如果限定求某个节点 上的导数值,那么第二项中 由于 是 的未知函数,所以对随意给出的点 , 误差是无法预估的. 因式 变为零,这时余项公式为 ( 6.4 ) 下面仅考察节点处的导数值并假定所给节点是等距的.

31 1. 两点公式 设已给出两个节点 上的函数值 对上式两端求导,记 ,有 做线性插值 于是有下列求导公式:

32 利用余项公式 (6.4) 知,带余项的两点公式是

33 2. 三点公式 设已给出三个节点 上的函数值, 做二次插值 令 上式可表示为

34 两端对 求导,有 ( 6.5 ) 式中撇号( ′ )表示对变量 求导数.

35 分别取 得到三种三点公式: 带余项的三点求导公式为 ( 6.6 )

36 其中的公式 (6.6) 是中点公式. 它比其余两个三点公式少用 了一个函数值. 用插值多项式 作为 的近似函数,还可以建立 高阶数值微分公式: 例如,将式 (6.5) 再对 求导一次,有

37 于是有 而带余项的二阶三点公式如下: ( 6.7 )

利用数值积分求导 微分是积分的逆运算,因此可利用数值积分的方法来 计算数值微分. 设 是一个充分光滑的函数, ( 6.8 ) 对上式右边积分采用不同的求积公式就可得到不同的数值 微分公式. 则有

39 例如,用中矩形公式 (1.2) ,则得 从而得到中点微分公式 若对 (6.8) 右端积分用辛普森求积公式,则有

40 略去上式余项,并记 的近似值为 则得到 辛普森数值微分公式 这是关于 的 个方程组, 已知, ( 6.9 ) 若 则可得

41 这是关于 的三对角方程组,且系数矩阵为严格 对角占优的,可用追赶法求解 ( 见第 5 章 5.4 节 ). 如果端点导数值不知道,那么对 (6.9) 中第 1 个和第 个方程可分别用 及 的中点微分公式近似, 然后求 即为 的近似值. 即取

42 例 8 给定 的一张数据表 ( 表 4-9 左部 ) , 并给定 及 的值 ( 见表 4-9). 解 解之得 利用辛普森数值微分公式求 在 上的一阶导数. 结果见表 4-9. 根据 (6.9) 有

43