1.4.2 微积分基本定理 ●三维目标 1.知识与技能 (1)了解微积分基本定理,学会应用微积分基本定理求定积分;

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
成才之路 · 数学 人教A版 · 选修2-2 路漫漫其修远兮 吾将上下而求索.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
计算机数学基础 主讲老师: 邓辉文.
Math2-4 内容预告 授 课 内 容 取对数求导法 导数基本公式 高阶导数 同学们好 现在开始上课 Math2-4.
高等数学 西华大学应用数学系朱雯.
第一章 函数与极限.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第4讲 定积分及其应用举例 考纲要求 考纲研读 定积分与微积分基本定理 1.了解定积分的实际背景,了解 定积分的基本思想,了解定积分
1.5 函数y=Asin(ωx+φ)的图象.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
人教版高一数学上学期 第一章第四节 绝对值不等式的解法(2)
北师大版五年级数学下册 分数乘法(一).
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
3.1.3 导数的几何意义.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
一元二次不等式解法(1).
3.2 导数的计算.
静定结构位移计算 ——应用 主讲教师:戴萍.
2019/5/20 第三节 高阶导数 1.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
几种常见函数的 导 数.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
1.4.2正弦函数、余弦函数的性质.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

1.4.2 微积分基本定理 ●三维目标 1.知识与技能 (1)了解微积分基本定理,学会应用微积分基本定理求定积分; 1.4.2 微积分基本定理 易错易误辨析 教学教法分析 ●三维目标 1.知识与技能 (1)了解微积分基本定理,学会应用微积分基本定理求定积分; (2)通过对本节课学习,培养应用微积分思想解决实际问题的能力. 当堂双基达标 课前自主导学 课后知能检测 课堂互动探究 教师备选资源

2.过程与方法 (1)通过自主探究速度与位移的关系及对图象的研究,巩固数形结合的 方法; (2)通过设问,探究速度与位移的关系,培养化整为零、以直代曲的思 想. 3.情感、态度与价值观 (1)感知寻求计算定积分新方法的必要性,激发求知欲; (2)通过对定理的应用,体会微积分基本定理的优越性; (3)帮助建立微观与宏观的联系桥梁.

●重点难点 重点:通过探究变速直线运动中的速度和位移的关系导出微积分基本 定理,以及对微积分基本定理的应用. 难点:了解微积分基本定理的含义.

2.对一个连续函数f(x)来说,是否存在唯一的F(x),使得F′(x)=f(x)? 【提示】 不唯一,根据导数的性质,若F′(x)=f(x),则对任意实数C, 都有[F(x)+C]′=F′(x)+C′=f(x).

F(b)-F(a) F(b)-F(a)

【思路探究】 (1)、(2)先求被积函数的一个原函数F(x),然后利用微 积分基本定理求解;(3)、(4)则需先对被积函数变形,再利用微积分 基本定理求解.

求简单的定积分应注意两点: (1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原 函数,当原函数不易求时,可将被积函数适当变形后再求解; (2)精确定位积分区间,分清积分下限与积分上限.

1.分段函数在区间[a,b]上的定积分可分成n段定积分和的形式,分 段的标准可按照函数的分段标准进行. 2.当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数 的定积分再计算.

(1)由曲线y=x2-1,直线x=0,x=2和x轴围成的封闭图形的面积(如 图1-4-3所示)是(  )

(2)求抛物线y2=2x和直线y=-x+4所围成的图形的面积.

【思路探究】 (1)当图形在x轴下方时,图形面积与相应定积分互为 相反数.(2)画出图形,求出两曲线的交点坐标,在交点处,把所求图 形分割为两个规则图形求面积.

【答案】 C (2)画出草图,如图所示.

2.利用定积分求平面图形面积的步骤: (1)画图形. (2)确定积分区间和上、下边界表示的函数解析式: 通过解方程组求出交点的横坐标,从而确定积分区间,观察图形上、 下边界是否是同一函数的图象,确定边界表示的函数解析式.

(3)面积表示:在每一个积分区间上,被积函数是图形上边界与下边界 所表示函数解析式的差,从而写出平面图形的面积的定积分表达式. (4)求面积:求定积分进而得图形的面积.

【答案】 B

求原函数时忽略原函数 是否有意义致误

【错因分析】 积分区间为[-2,-1],原函数F(x)=ln x的定义域为 (0,+∞),因此无法求解. 【防范措施】 当积分区间使原函数没有意义时,可先根据定积分的 几何意义变形,再求定积分,或改变原函数的表达式求解.

【答案】 B

【答案】 C

课后知能检测 点击图标进入… 41

【思路探究】 解答本题可以利用微积分基本定理求出f(a)的表达式, 再求其最大值.

1.熟悉基本初等函数的导数公式是应用微积分基本定理的基础,对 于较复杂的函数式,可以对函数式进行变形,化为基本初等函数后再 求定积分. 2.掌握求函数最值的方法:配方法、基本不等式、导数法等.