数学史概论 ——复变函数论 05数教 43号 周玢婷 2007.1.11.

Slides:



Advertisements
Similar presentations
质数和合数 2 的因数( ) 6 的因数( ) 10 的因数 ( ) 12 的因数 ( ) 14 的因数 ( ) 11 的因数 ( ) 4 的因数( ) 9 的因数( ) 8 的因数( ) 7 的因数( ) 1 、 2 、 3 、 4 、 6 、 12 1 、 11 1 、 2 、 5 、 10.
Advertisements

高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
§5 微分. 一 问题的提出 1 面积问题 设有一边长为 的正方形 2 自由落体问题 二 微分的定义 1 定义.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
因数与倍数 2 、 5 、 3 的倍数的特 征 新人教版五年级数学下册 执教者:佛山市高明区明城镇明城小学 谭道芬.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第三章 函数逼近 — 最佳平方逼近.
《高等数学》(理学) 常数项级数的概念 袁安锋
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
定积分习题课.
第十八章 含参变量的反常积分 教学目标: 1°使学生掌握含参变量反常积分概念; 2°使学生学会用定义证明含参变量反常积分收敛性。
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
复变函数与积分变换 主讲: 王洪涛 QQ: Tel:
第三章 导数与微分 习 题 课 主要内容 典型例题.
第一章 导数与微分 1.1 函数及其性质 1.2 极限 1.3 极限的性质与运算法则 1.4 两个重要极限 1.5 函数的连续性
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第2章 Z变换 Z变换的定义与收敛域 Z反变换 系统的稳定性和H(z) 系统函数.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
2.1.2 指数函数及其性质.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第一章 函数与极限.
数列.
Partial Differential Equations §2 Separation of variables
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
实数与向量的积.
作业 P158 习题 2 1(2)(4) (5). 2(1). 预习 P156— /5/2.
作业 P152 习题 复习:P 预习:P /5/2.
第三单元 第2课 实验 一元函数的积分 实验目的:掌握matlab求解有关不定积分和定积分的问题,深入理解定积分的概念和几何意义。
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第二十六章 反比例函数 反比例函数的意义 北京市清华大学附属中学 张 钦.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
Presentation transcript:

数学史概论 ——复变函数论 05数教 43号 周玢婷 2007.1.11

复变函数理论的创立 19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。 1850年以前,柯西、雅可比、高斯、阿贝尔、魏尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。 复变函数论产生于十八世纪,全面发展于十九世纪,当时的数学家们公认复变函数论是最丰饶的数学分支,并且称之为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。   柯西、黎曼和魏尔斯特拉斯是公认的复变函数论的主要奠基人。 2007.1.11

复变函数论 数学的一个分支学科。 研究定义域与值域均为复数集的函数 。 研究定义域与值域均为复数集的函数 。 复数是形如a+ib的数,其中a ,b是任意实数,i称为虚单位,表示 ,即满足关系式i2=-1,复数与平面上的点(a,b)具有一一对应关系。 L.欧拉在初等函数中引进了复变数,并给出了著名的欧拉公式eix=cosx+isinx,欧拉公式揭示了三角函数与指数函数的关系。欧拉和J.L.R.达朗贝尔在研究水力学时引用了一般的复变函数f(z)=u(x,y)+iv(x,y),并提出f(z)在域D可导的充要条件是u,u 可微且满足条件 这一条件后来被称为柯西-黎曼。 2007.1.11

复变函数论的内容 以复数作为自变量的函数叫做复变函数,而以复数域上的解析函数为主要研究对象的数学分支就是复变函数论。 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论 。 留数理论是复变函数论中一个重要的理论,留数也叫做残数 。 黎曼曲面 2007.1.11

柯西—— 复变函数论的奠基人之一 柯西(Cauchy,1789-1857),十九世纪前半世 纪的法国数学家。证明了复变函数论的主要定理 柯西——  复变函数论的奠基人之一 柯西(Cauchy,1789-1857),十九世纪前半世 纪的法国数学家。证明了复变函数论的主要定理 以及在变数和复变数的情况下微分方程解的存在定理。 A.-L.柯西定义了复变函数的积分,建立了复积分的理论,他证明了柯西积分定理 。  用复变函数的积分计算实积分,这是复变函数论中柯西积分定理的出发点 。 柯西最重要和最有首创性的工作是关于单复变函数论的。 18世纪的数学家们采用过上、下限是虚数的定积分。但没 有给出明确的定义。柯西首先阐明了有关概念,并且用这 种积分来研究多种多样的问题 。 2007.1.11

黎曼——  复变函数论的奠基人之一 黎曼,19世纪最富有创造性的德国数学家、数学物理学家。黎曼1826年9月17日生于汉诺威的布列斯伦茨,1866年7月20日卒于意大利的塞那斯加,终年40岁。 1851年,在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文 。 在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。 经黎曼处理的复函数,单值函数是多值函数的 待例,他把单值函数的一些已知结论推广到多值 函数中,尤其他按连通性对函数分类的方法,极 大地推动了拓扑学的初期发展。 2007.1.11

魏尔斯特拉斯——复变函数论的奠基人之一 魏尔斯特拉斯,K.W.T.(Weierstrass,Karl WilhelmTheodor)1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林.数学. 在魏尔斯特拉斯的早期论文中,已引进多复变量幂级数 与复n维空间中的一些拓扑概念,定义了多复变量幂级数的收敛多圆柱,他还通过系数估计得到由幂级数表示的函数. 所确定的隐函数zv=hv(zm+1,…,zn) (v=1,…,m)可展开为幂级数的定理. 魏尔斯特拉斯对多复变函数论的最大贡献, 是他于1860年讲课中提出并于1879年发表 的“预备定理” 2007.1.11